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A B S T R A C T   

The geometric information of space, such as environment boundaries, is represented heterogeneously across 
brain regions. The computational mechanisms of encoding the spatial layout of environments remain to be 
determined. Here, we postulate a conjunctive encoding theory to illustrate the construct of cognitive maps from 
geometric perception. The theory naturally describes a spectrum of cell types including experimentally observed 
boundary vector cells, border cells, “annulus” and “bulls-eye” cells as special examples. In a similar way, inspired 
by the integration of egocentric and allocentric information as found in the postrhinal cortex, the theory also 
predicts a new cell type, named geometry cell. Geometry cells encode the geometric layout of the local space 
relative to the environment center, independent of the animal’s positions and headings within the local space. 
The predicted geometry cell provides pure allocentric high-level representations of local scenes to support the 
quick formation of cognitive map representations capturing the spatial layout of complex environments. The 
theory sheds new light on the neural mechanisms of spatial cognition and brain-inspired autonomous intelligent 
systems.   

1. Introduction 

Spatial cognition is one fundamental function of an animal to achieve 
long-term autonomy in the environment. It has been suggested that a 
map representation of the external world subserves brain functions such 
as navigation and planning, as it encodes the structure of the external 
world as well as the relationships between entities in the world with a 
form invariant to the observations of these entities (Tolman, 1948; 
Behrens et al., 2018). Humans and animals are able to efficiently create 
compact and sparse mental representations of the spatial structure of the 
environment for navigation (Poulter et al., 2018; Peer et al., 2020). 
Cognitive map representations are embodied by spatial-responsive cells 
found in the entorhinal-hippocampal neural circuit (Rolls and Kesner, 
2006; Poulter et al., 2018). The firing activities of place cells in the 
hippocampus of mammalian brains constitute sparse representations of 
self-location in the environment (O’Keefe and Dostrovsky, 1971; Rich 
et al., 2014). Head-direction cells (HD cells) fire maximally when the 
animal faces in their preferred directions with respect to a reference 
frame, but are not tuned to the animal’s position (Taube et al., 1990). 

Grid cells in the medial entorhinal cortex (MEC) each encode multiple 
locations that collectively express a hexagonal grid pattern across the 
whole explored environment (Hafting et al., 2005; Killian et al., 2012). 
Spatial view cells are activated by visual scenes and can anchor the 
neural representations in the entorhinal-hippocampal neural circuit to 
landmarks, and therefore could reduce the accumulation of errors dur
ing path integration (Rolls et al., 1997; Collett and Graham, 2004; 
Hardcastle et al., 2015; Rolls and Wirth, 2018). These functionally 
distinct cell types encode the cognitive map of the environment in an 
allocentric reference frame. 

Cognitive map representations are shaped by environment bound
aries. Firing fields of place cells were observed to stretch in response to 
changes to the wall (O’Keefe and Burgess, 1996). The parahippocampal 
place cells in humans are activated by images of scenes regardless of 
their contents (Epstein and Kanwisher, 1998; Ekstrom et al., 2003), 
which is considered to encode the spatial layout (Epstein et al., 2007). 
The grid firing patterns are fragmented and distorted due to changes of 
environmental geometry (Barry et al., 2007; Derdikman et al., 2009; 
Stensola et al., 2015; Krupic et al., 2015). The allocentric geometric 
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information of environmental boundaries is conveyed by various cell 
types (Grieves and Jeffery, 2017). The “boundary cell” shows different 
firing patterns, like boundary vector cells (BVCs) (Barry et al., 2006; 
Lever et al., 2009), border cells (Solstad et al., 2008), boundary-off cells 
(Stewart et al., 2014), and all-boundary cells, including “annulus” and 
“bulls-eye” cells (Weible et al., 2012; Jankowski et al., 2015). An 
egocentric spatial representation of environmental boundaries is found 
in the dorsomedial striatum (Hinman et al., 2019). In the lateral ento
rhinal cortex (LEC), some neurons show selectivity for the egocentric 
bearing of environmental boundaries, centers, or goals in the environ
ment (Wang et al., 2018). Neurons in the posterior parietal cortex 
represent the egocentric cue direction and HD conjunctively (Wilber 
et al., 2014). Neurons in the postrhinal cortex (POR) encode the 
conjunction of center bearing (CB) and head direction, with a moderate 
linear firing rate tuning by the center distance (CD) of the animal either 
positively or negatively (LaChance et al., 2019), where egocentric in
formation can be transformed into allocentric spatial maps. These cell 
types encode geometry information of important entities, such as 
boundaries, centers, and landmarks, of the environment, and constitute 
computational building blocks in transforming the egocentric informa
tion sensed by an animal to allocentric cognitive map representations 
(Byrne et al., 2007; Bicanski and Burgess, 2018; Rolls, 2020; Evensmoen 
et al., 2021). 

Neurons in many brain regions show selectivity to the association of 
multiple features (Sargolini et al., 2006; Rigotti et al., 2013). The 
conjunctive encoding of features could be implemented by a network 
that maps low dimensional feature space to high dimensional neural 
activity space (Si et al., 2014; Barak and Romani, 2021). An intriguing 
question to ask is whether the flexible and heterogeneous representa
tions of geometry features could be described in the same framework of 
conjunctive encoding. To this end, we propose a theory of geometry 
representations to holistically characterize the computational mecha
nism underlying various boundary-related cells. Similarly, inspired by 
the transformation from egocentric perception into allocentric spatial 
maps in the postrhinal cortex, the theory predicts a new cell type named 
geometry cells, which encode the geometric layout of the local space 
relative to the center independent of the animal’s positions and head
ings. The predicted geometry cells support the high-level spatial maps. 
The theory computationally explains the transformation from egocentric 
geometric sensory inputs to topological cognitive map representations 
that captures the spatial layout of complex environments. The theory 
describes the computational mechanism of various boundary-related 
cells (including the newly predicted geometry cells), which embody 
efficient spatial navigation at the neuronal level. 

It is worthwhile to note that the understanding of the cognitive map 
system mainly attends to the representation of the entities of space with 
respect to the animals themselves. A pure allocentric neural coding of 
the space, i.e. encoding the relationship between entities, has not yet 
been found. This kind of pure allocentric representation is not depen
dent on the pose of the animal, but encodes the layout of the environ
ment itself, and therefore could support abstract reasoning and planning 
in the view of an ideal observer. Inspired by the transformation from 
egocentric perception into allocentric spatial maps in the postrhinal 
cortex, we generalize the theory and predict that a new cell type, named 
geometry cells, could possibly exist to encode the geometric layout of 
the local space relative to the center, independent of the animal’s po
sitions and headings. 

2. Results 

To better understand the computations performed by various 
boundary-encoding cells, we formulate a computational framework that 
puts different cell types as building blocks into the transformation from 
egocentric representations of geometric information to allocentric neu
ral codes of spatial layout. First, boundary features relative to self- 
location are tracked in high dimensional neural activity spaces by 

boundary cells (Fig. 1). Second, the self-location relative to the envi
ronment center is conveyed in the activities of center-bearing cells in the 
postrhinal cortex (Fig. 2). These two sources of information are com
bined, possibly in the postrhinal cortex, resulting in a new cell type 
called geometry cell encoding boundary features relative to the envi
ronment center (Fig. 3). Geometry cells are selective to the conjunctions 
of the orientations and distances of boundaries from the viewpoint of the 
environment center, and therefore provide pure allocentric representa
tions of the environment itself (Fig. 4). 

2.1. Neural framework of conjunctive boundary representations 

In this framework, boundary units are hypothetically arranged on a 
two-dimensional neuronal sheet (Fig. S1a). Each unit in the model is 
labeled by its coordinate (θ, r) on the neuronal sheet. The coordinate of a 
boundary unit encodes the conjunction of the bearing and the distance 
of a boundary. θ ∈ [0, 2π) encodes the direction in which the unit senses 
the boundary either in an egocentric or allocentric reference frame 
(Figs. S1b and 1 a). r ∈ [0, π

2) encodes the distance of the boundary 
relative to the center of the animal’s head. The boundary distance is 
mapped nonlinearly to the distance dimension in the neuronal sheet, 
allowing the representation of wide distance coverage from vicinity to 
infinity (Fig. S1b) according to 

r(Θ) = arctan(αd(Θ)), (1)  

where d(Θ) is the distance of the boundary in direction Θ. The distance 
of the boundary could be estimated by the animal by depth perception. 
The boundaries outside of the visual field could be tracked by mecha
nisms similar to path integration, possibly implemented by attractor 
networks. α > 0 is a parameter determining the steepness of distance 
mapping (Fig. S1c). 

2.2. Egocentric boundary cell model 

When the egocentric bearings of boundaries are mapped to the 
neuronal sheet, the framework gives rise to egocentric boundary cell 
model. Units in the egocentric boundary cell model account for the 
egocentric boundary cells found in the dorsomedial striatum (Hinman 
et al., 2019), the lateral entorhinal cortex (Wang et al., 2018), and the 
retrosplenial cortex (Alexander et al., 2020). Egocentric boundary units 
are driven by the geometric information of the boundaries within an 
egocentric reference frame. The firing rate m(θ, r) of the unit at the 
coordinate (θ, r) on the neuronal sheet is governed by the equation 

m

(

θ, r

)

=
∫ 2π

0
exp[− (r− r(Θ))2/2σ2

dist]̅̅̅̅̅̅̅̅̅
2πσ2

dist

√

⋅
exp
[
κangcos

(
θ − Θ

)]

2πI0
(
κang
) dΘ,

(2)  

where r(Θ) ∈ [0, π
2), given by Eq. (1), is the distance input at angle Θ in 

the physical environment. θ is the direction of a boundary in the 
egocentric reference frame. The integration represents the dendritic 
integration of a unit. The strength of the interaction between units is 
modeled by the product of a Gaussian function and a von Mises function. 
σdist > 0 and κang > 0 are constants which describe the interaction range 
between units in the distance and orientation dimensions, respectively. 
I0(κang) is the modified Bessel function of order 0. 

To investigate the firing activity of the model units, a virtual animal 
is simulated to explore a virtual environment with walls (Ref. Section 4). 
Given the sensory inputs, a pattern of activity emerges as a result of the 
integration of the current from presynaptic units on the neuronal sheet 
(Eq. (2), Fig. 1b Left). Depending on the units’ positions on the neuronal 
sheet, egocentric boundary units show selectivity to a border at a given 
egocentric direction and distance to the animal (Figs. 1b Middle and S2). 
The same unit does not express localized firing fields in the allocentric 
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reference frame, but its activation is contingent on the boundaries that 
appeared in a particular direction and distance relative to the trajectory 
(Figs. 1b Right and S3). 

2.3. Allocentric boundary cell model 

When the bearings of boundaries in an allocentric reference frame 
are mapped to the neuronal sheet, the framework gives rise to the 
allocentric boundary cell model. Allocentric boundary cell model ex
plains the firing properties of the BVCs recorded in the subiculum (Lever 
et al., 2009; Stewart et al., 2014) and the border cells in the entorhinal 
cortex (Solstad et al., 2008). In the model, allocentric boundary units are 
arranged on a neuronal sheet with coordinate (θ, r). θ ∈ [0, 2π) encodes 
the allocentric direction of a boundary, i.e. relative to a reference frame 
in the environment. r ∈ [0, π

2) encodes the distance of the boundary 
relative to the center of the animal’s head (Eq. (1)). 

The firing rate m(θ, r) of a allocentric boundary unit is described as 

m

(

θ, r

)

=

∫ 2π

0

exp
[
− (r − r(Θ))

2/2σ2
dist

]

̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

dist

√ ⋅
exp
[
κangcos

(
θ − Θ + ΘHD

)]

2πI0
(
κang
) dΘ,

(3)  

where ΘHD is the head direction of the animal. The model rotates the 
encoding of the boundaries in an egocentric reference frame by the 
amount ΘHD into an allocentric reference frame. The rotation can be 
realized by a feedforward associative network receiving inputs from the 
HD cell network and the egocentric boundary cell network. 

In a cylinder maze, some allocentric boundary units form firing fields 
at the border in particular directions, resembling those of the border 
cells found in MEC (Left in firing rate maps of Figs. 1c and S4d). Other 

units fire along the wall with some distance away, and form fields 
similar to those of BVCs (Fig. S4a). 

2.4. Pure boundary cell model 

By integrating the activities of allocentric boundary units along the 
direction dimension θ, the allocentric boundary cell model generates 
pure boundary cell model. The firing rate m(r) of a pure boundary unit at 
coordinate r is given by 

m

(

r

)

=
∫ 2π

0

∫ 2π
0

exp[− (r− r(Θ))2/2σ2
dist]̅̅̅̅̅̅̅̅̅

2πσ2
dist

√

⋅
exp
[
κangcos

(
θ − Θ + ΘHD

)]

2πI0
(
κang
) dΘdθ.

(4) 

Pure boundary unit at coordinate r encodes the boundaries at its 
preferred distance regardless of directions. As a result, pure boundary 
units are selective to certain distances of the boundaries but not to di
rections. The firing field of a pure boundary unit is typically paved along 
the boundary with preferred distance, and does not differentiate the 
direction of the boundary (Fig. S4c). In a cylinder environment, some 
pure boundary units express firing fields in the center or around the 
periphery of the maze (middle and right firing rate maps in Fig. 1c), 
similar to bulls-eye cells or annulus cells observed experimentally (Barry 
et al., 2006; Lever et al., 2009). Other pure boundary cells are most 
active when the animal is of medium distance away from the boundary 
(Fig. S4c). Pure boundary units reproduced the firing activities of the 
boundary cells recorded in the anterior claustrum, the rostral thalamus 
(Jankowski et al., 2015), the MEC (Solstad et al., 2008), and the anterior 
cingulate cortex (Weible et al., 2012). 

Fig. 1. Egocentric and allocentric representations of boundaries in the model. (a) Boundary Perception. The orientations and distances (red thin lines) of 
boundaries (black thick line) are perceived by the animal in an egocentric reference frame. (b) Egocentric Boundary Representations. Left: The population activity 
of egocentric boundary units encodes the distance of boundaries (y-axis) at each direction (x-axis) relative to the heading direction of the animal (Eq. (2)). The 
activity pattern corresponds to the perceived boundary distance and orientation in (a), and is color-coded from red to blue for high firing rate to zero firing rate. The 
left (0 to π) is closer to the boundary than the right (π to 2π). Middle: An egocentric boundary unit in the model that prefers boundaries at a certain distance to the 
front of the animal forms a field in the egocentric reference frame of the animal. Right: The egocentric boundary unit in (Middle) fires when the animal heads 
towards boundaries at a certain distance in an allocentric reference frame. The firing rate is color-coded on top of the trajectories. (c) Allocentric Boundary 
Representations. Left: The population activity of allocentric boundary units encodes the distance of boundaries (y-axis) at each direction (x-axis) in an allocentric 
reference frame with north as zero degrees (Eq. (3)). Note that the population activity of the allocentric boundary units is a 171.49◦ clockwise rotated version of the 
egocentric boundary cells shown in (b Left). The southeast is closer to the boundary than the northwest. Firing rate maps from left to right: An allocentric 
boundary unit in the model that prefers a proximal boundary at zero degrees fires at the north border; a pure boundary unit that prefers proximal boundaries has a 
firing field close to the border in a cylinder environment, similar to that of an annulus cell (Eq. (4)); the firing rate map of a pure boundary unit that prefers distal 
boundaries resembles that of a bulls-eye cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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2.5. Conjunctive center-bearing cell model 

The center-bearing in the egocentric coordinate and the HD of the 
animal could also be mapped onto the neuronal sheet. With additional 
center-distance modulation, the framework gives rise to a conjunctive 
center-bearing cell model for the space-responsive cells found in the 
POR (LaChance et al., 2019), which integrates egocentric and allocentric 
spatial information relative to the geometric center of the local envi
ronment. The self-location of the animal is represented by the vector EO̅→

relative to the geometric center of the local space (Fig. 2a left, 
Ref. Section 4). Since the angle of the animal in the polar coordinate 
system anchored to the center can be uniquely determined from the 
head direction and the center bearing, the space-responsive cells found 
in the POR encode the polar coordinate of the animal (Fig. 2a left). 

The conjunctive center bearing units are organized on a two- 
dimensional neuronal sheet. Each conjunctive center bearing unit is 
labeled by its coordinate (θhd, θcb) on the neuronal sheet. θhd is the unit’s 
preferred HD of the animal, and θcb the preferred center-bearing in the 

Fig. 2. Conjunctive representations of center bearing and head direction in the model. (a) Egocentric and Allocentric Transformation. Left: A schematic showing 
the head direction in an allocentric reference frame O and the center bearing as well as center distance in an egocentric reference frame E. The allocentric reference 
frame O is anchored to the north as zero degrees. The egocentric reference frame E takes the front direction as zero degrees. Point P in egocentric coordinate frame E 
can be transformed into coordinate frame O of the environment associated with the geometry representation. The boundary vector OP̅→ is indexed by its orientation ω. 
A polar coordinate (1.12m, 61.07◦) is equivalently represented by HD (96.36◦), CB (144.71◦), and CD (1.12m). Right: An activity bump in the network of conjunctive 
center-bearing units encodes the conjunction of HD, CB, and CD (Eq. (5)), corresponding to the configuration of the animal shown in (Left). The center of the activity 
bump encodes the conjunction of the head direction (x-axis) and the center bearing (y-axis). The height of the activity bump is modulated positively by the center 
distance. (b) Head-Direction-by-Center-Distance Representations. Left: The sum of the firing rate maps of two HD-by-CD units in the model with north or south 
preference are positively modulated by CD. The two units fire along the trajectories heading towards north or south. Due to the positive modulation of CD, the firing 
rate of the units is higher when the animal is close to the border and lower when near the center. Right: The firing rate of a north-preferring HD-by-CD unit is peaked 
at its preferred HD (zero degrees). The HD tuning of the firing rate is variable due to modulation by CD. Gray colors from dark to light encodes large to the small CD. 
(c) Center-Bearing-by-Center-Distance Representations. Left: A CB-by-CD unit with center-facing preference and positive distance modulation fires only when 
toward the center. Due to the positive modulation of CD, the firing rate of this unit is higher when the animal is close to the border and lower when near the center. 
Right: The unit shown in (left) has a peak firing rate at its preferred CB, i.e. zero degrees. The CB tuning of the firing rate is variable due to the modulation by CD. CD 
is coded by black for large distances and light gray for small distances. (d) Center-Distance Representations. Left: The firing rate map of a center-distance unit with 
positive distance tuning shows an increased firing rate trend away from the geometric center. Middle left: The firing rates of the unit in (left) correlate positively 
with the center-distance. Middle right: The firing rate map of a center-distance unit with negative distance tuning shows a decreased firing rate trend away from the 
geometric center. (Right:) The firing rate of the unit in (middle right) negatively correlates with center-distance. 
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egocentric coordinate (Fig. 2a left). The firing activity of a center- 
bearing unit (θhd, θcb) is tuned conjunctively to head direction and 
center-bearing with a moderate linear modulation by center-distance 
(Fig. 2a right) 

m
(
θhd, θcb, d

)
= kd[cos(θhd − Θhd) + cos(θcd − Θcd) − Cinh]+ + b, (5)  

where Cinh is a uniform inhibition, and [x]+ = 0 for x < 0, [x]+ = x for 

x ≥ 0. Θcb and d are the bearing and length of the vector EO̅→ respectively 
(Fig. 2a). k defines the steepness of the distance tuning. b is the baseline 
activity. 

Integrating the population of the conjunctive center bearing units 
along different dimensions of the neuronal sheet gives rise to three other 
cell populations that encode HD-by-CD, CB-by-CD, and pure CD 
respectively. The HD-by-CD units are active when the animal points its 

Fig. 3. Geometry units encode spatial layouts of local space. (a) Geometry Representations in Mazes of Different Layouts. Activities of geometry units (Eq. 7) in 
convex environments is able to differentiate open field mazes, such as a cylinder (Left), square (Middle), and pentagon (Right). In each subfigure, the virtual 
animal’s trajectory (blue lines), estimated centers (red dots), and the average of the estimated centers (yellow disks) are shown on the top left. The average pop
ulation activities of geometry units encode the conjunction of boundary distance and orientation relative to an allocentric reference frame anchored to the estimated 
center of the environment (bottom left). Since the boundaries are perceived without any occlusion, the activity pattern of geometry units is independent of the 
positions of the animal. The magnitudes of the constant firing rate maps of geometry units differ, however, due to their preferences for distance and HD (firing rate 
maps on the right, corresponding to seven units marked by seven white boxes in the bottom left). (b) A Topological Cognitive Map from Geometry Represen
tations. A virtual animal explores a concave environment with two convex mazes connected by a narrow corridor (top). The estimated centers are distributed around 
three clusters (top, magenta, cyan, and red respectively). The average population activities of the three clusters differ from each other (bottom), and allow the 
distinction of the differences in the layout of the local space. The three connected cluster centers can be considered as a simple topological cognitive map. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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head to the preferred HDs of the units (Fig. 2b left). The HD tuning 
curves of HD-by-CD units are modulated by the distance of the animal’s 
body from the center, leading to high firing rate variability along with 
their preferred HDs (Fig. 2b right). In a similar fashion, the CB-by-CD 
units are tuned to CB, and the modulation by CD increases the irregu
larity of firing (Fig. 2c). The pure CD units show broad firing fields either 
on the border or around the center, depending on whether the firing rate 
tuning of CD is positive or negative (Fig. 2d). 

2.6. Geometry cell model 

Boundary cells (Fig. 1) encode boundary vectors EP̅→ (Fig. 2a) rela
tive to the animal’s self-position. The conjunctive center-bearing cell 
model describes the receptive fields of space-responsive cells found in 
the POR, and provides a representation of the vector EO̅→ pointing from 
the animal’s self-position to the geometric center. The difference of 
these two vectors defines the boundary vector OP̅→ relative to the geo
metric center 

OP̅→ = EP̅→ − EO̅→. (6) 

The vector OP̅→ could be embodied by a new cell type, named ge
ometry cell. The hypothetical geometry cells map the conjunction of 
boundary distances and boundary directions relative to the environment 
center to a neuronal sheet. Each geometry unit in the model is labeled by 
its coordinate (θ, r) on the neuronal sheet. θ is the preferred allocentric 
direction and r is the preferred distance of the boundary. The firing rate 
of a geometry unit at (θ, r) is given by 

m

(

θ, r

)

=

∫ 2π

0

exp
[
− (r − r(ω))2/2σ2

dist

]

̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

dist

√ ⋅
exp
[
κangcos

(
θ − ω + ΘHD

)]

2πI0
(
κang
) dω,

(7)  

where ω and r(ω) are the orientation and length of the vector OP̅→

respectively (Fig. 2a). ΘHD, the head direction of the animal, describes 
the rotation from the allocentric reference frame to the egocentric 
reference frame. 

The population activity of geometry cells characterizes the geometry 
of local space. In a cylinder maze, the population activity of geometry 
units forms a stripe firing pattern centered in neurons with a preferred 
distance equal to the radius of the maze (Fig. 3a left, Supplementary 
movie 1, Figs. S5–S6). The stripe firing pattern is an encoding of the 
center with a constant distance to the perimeter of the maze. The single- 
cell firing rate map of a geometry unit is uniform across the maze 
(Fig. 3a left). Different geometry units fire with different rates, 
depending on their preferred distances and HDs. Although geometry 
units do not have localized firing fields in the open field cylinder envi
ronment, they collectively encode the layout of local space. In convex 
mazes of different shapes, the population activities of geometry units 
keep persistent firing patterns reflecting layouts of the mazes (Fig. 3a 
middle and right, Supplementary movie 2–3). The neural activity of 
geometry units changes substantially at the conjunctions of compart
ments where the geometric layout of local space undergoes an abrupt 
transition (Fig. 3b, Supplementary movie 4). This kind of change in 
neural activity could support the topological representation of the 
environment that is composed of multiple subregions of a different 
shape. 

2.7. Compact topological cognitive map capturing spatial layout 

To further test the theory of geometry representations of space in a 
more realistic environment, a topological cognitive map is generated for 
a 41m × 22m virtual office environment with six different sized rooms 
based on the models derived from the proposed theory (Fig. 4a, Sup
plementary movie 5). 

Computed from the activities of boundary units and the conjunctive 
center-bearing units, the activity pattern of geometry units encodes the 
layout of the local space in relation to the center. Geometry units thus 
provide a high-level mapping of the local space invariant to the posi
tions, orientations, and trajectories of the agent. Using the activity 
pattern of geometry units as a geometry representation of the entire 
local space, a topological map of the environment is constructed online 
quickly (Fig. 4b). While the agent explores the environment, a new 
vertex is added to the map once the distance between the centers of two 
local spaces exceeds a certain dynamic threshold. Connecting the centers 
associated with the geometry representations naturally results in a graph 
of the environment. The graph is composed of vertices that represent the 
center of a local space and edges that represent the estimated vectors 
between the connected vertices. The topological map (31 red vertices 
and 33 red edges in Fig. 4b) thus obtained is independent of the actual 
trajectories (blue lines in Fig. 4b) of the agent, since the map charac
terizes local geometry. Each room of the virtual office is represented by 
only 5 vertices on average. The topological cognitive map is compact 
and sparse, since the number of vertices is far less than the 1491 sample 
points of the robot trajectory. 

3. Discussion 

We have formulated a theory of conjunctive encoding for geometry 
representations of space. The hallmark of this theory is the conjunctive 
encoding of multiple behavior-relevant features on an abstract neuronal 
sheet. By mapping different inputs to the neuronal sheet, the network 
could flexibly encode multiple sources of information, and accounts for 

Fig. 4. The cognitive map generated from the theory of geometry representa
tions of space. (a) The virtual office environment. A robot explores a 
41m × 22m virtual office environment with six rooms of different size. (b) The 
topological cognitive map. The trajectory (shown as a dotted blue line) of the 
robot has 1491 sample points. Using the neural representation of geometry 
cells, the spatial layout of the virtual office is described by a topological 
cognitive map with only 31 vertices (red dots) and 33 edges (red lines). Each 
vertex in the cognitive map is associated with a geometry representation. If the 
distance between two centers of geometry representations exceeds a certain 
dynamic threshold, a new vertex would be created. The black lines and gray 
areas describe an occupancy grid map, which is the estimated probability of a 
place being occupied by boundaries. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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various cell types found in different brain regions encoding geometry 
information of the environment (see Fig. 5a for a summary wiring dia
gram). The boundary cells (Fig. 1) conjunctively encode the head di
rections and the distances of boundaries relative to the animal’s self- 
position, describing the vectors EP̅→ (Fig. 2a). The space-responsive 
cells found in the POR conjunctively encode the head direction, center 
bearing, and center distance, describing the animal’s self-position rela
tive to the center of local space (vector EO̅→ in Fig. 2a). To complete the 
relationships between the boundaries, self-position and the center of the 
local space, the theory predicts a new cell type, the geometry cells, as an 
embodiment of the vector OP̅→ (Fig. 2a). The geometry cells encode the 
conjunction of the orientations and the distances of boundaries relative 
to the geometric center of local space. The geometric features encoded 
by the geometry cells could be computed from the activities of boundary 
cells and conjunctive center-bearing cells (Eq. (6)), and could be 
implemented by neural network models (Wilber et al., 2014). Since the 
geometric features encoded by the geometry cells are invariant to the 
position of the animal in the local space, the geometry cells provide an 
allocentric encoding of the layout of the local space. Geometry cells 
furnish high-level representations of space and therefore support quick 
formation of spatial maps. The boundary cells, the conjunctive center 
bearing cells, and the geometry cells thus constitute a hierarchy of 
computations that extract high-level representations from the low-level 
perceptual information (Fig. S6). From the view of this theory, these cell 
types can be implemented by the same type of network architecture. It 
would be easier to develop brain regions containing these cell types 
using neural network motifs of the same structure. By routing different 
afferent inputs into the same network motif, cells develop rich neural 
codes of various spatial variables. 

3.1. Relations to experiments 

The theory gives rise to several models in a unified framework. The 
egocentric boundary cell model encodes the distance and orientation of 
the boundaries relative to the animal in an egocentric reference frame, 
and replicates the receptive fields of boundary-encoding cells found in 

the dorsomedial striatum (Hinman et al., 2019), LEC (Wang et al., 
2018), and retrosplenial cortex (Alexander et al., 2020). The allocentric 
boundary cell model encodes the boundaries at preferred distances to 
the animal and the preferred orientations with respect to an allocentric 
reference frame. Allocentric boundary units express similar firing fields 
as those of BVCs in the subiculum (Barry et al., 2006; Lever et al., 2009; 
Stewart et al., 2014) and border cells in MEC (Savelli et al., 2008; Solstad 
et al., 2008; Bjerknes et al., 2014). Units of the pure boundary cell model 
respond to the boundaries at particular distances regardless of their 
orientations, and show firing fields resembling those of annulus cells 
(Jankowski et al., 2015; Jankowski and O’Mara, 2015) and boundary-off 
cells/bulls-eye cells (Stewart et al., 2014; Weible et al., 2012; Solstad 
et al., 2008). Units of the conjunctive center-bearing cell model 
conjunctively encode three variables, namely allocentric head-direction, 
egocentric center-bearing, and center-distance. This model explains the 
firing patterns of many POR cells observed experimentally (LaChance 
et al., 2019). Some other POR cells are selective to two variables 
(LaChance et al., 2019), which can be modeled by dimension reduction 
of the conjunctive center-bearing cell model integrating along the un
related dimension. 

The proposed framework could also account for neurons that are 
selective to the vectors to objects, landmarks, or particular positions, 
such as goal locations (Høydal et al., 2019; Deshmukh and Knierim, 
2013; Sarel et al., 2017). Recent evidence in humans has shown that the 
medial temporal lobe could encode self-centered bearings and distances 
toward reference points (Kunz et al., 2021). The distance and orientation 
of reference points, e.g. objects or landmarks, are mapped to the 
network, and tracked by recurrent mechanisms driven by self-motion. 

The population activity of the geometry cell model represents the 
spatial layouts of the local space surrounding the animal. In the same 
spatial layout, each unit expresses uniform firing maps invariant to the 
positions in the environment (Fig. 3a). On the change of spatial layout, 
as the animal traverses in a heterogeneous environment, the activity of 
the geometry cells evolves into a different state (Fig. 3b). Thus, the ge
ometry cells provide a computationally efficient encoding of the un
derlying structure of the local space, and map local space in disparate 

Fig. 5. The unified theory of geometry repre
sentations provides a coherent coding mecha
nism underlying various boundary-related cell 
types in the brain. (a) A partial summary 
wiring diagram of major boundary-related 
regions found in the brain. These boundary- 
related cells are example cell types explained 
by the unified theory of geometry representa
tions. Pure boundary cells are found in the 
anterior claustrum, anterior cingulate cortex, 
and nucleus reuniens. Egocentric boundary 
cells are found in the dorsomedial striatum, 
LEC, and retrosplenial cortex. Allocentric 
boundary cells are found in the subiculum, 
MEC, presubiculum, and parasubiculum. The 
conjunctive center-bearing cells conjunctively 
encoding head direction, center-bearing, and 
center-distance are found in the postrhinal 
cortex. (b) Where are the geometry cells? The 
geometry cells are very likely to be found in the 
dorsal stream (“where pathway”) of the two- 
streams hypothesis, supporting spatial geome
try cognition together with boundary-related 
cells. The predicted brain areas where geome
try cells may exist are POR, MEC, CA1, and 
subiculum in the hippocampus.   
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environments into efficient topological map representations based on 
environmental boundaries. The geometry cells could serve as a foun
dation for cognitive maps observed in the entorhinal-hippocampal 
neural circuit. 

Our model assumes that all distances could be represented in the 
neuronal sheet. Recordings of boundary-responsive cells in large envi
ronments other than laboratory mazes of typical sizes should be carried 
out to test this assumption. Previous experiments in box mazes of side 
less than one meter have shown that sharper receptive fields of BVCs are 
distributed near boundaries (Lever et al., 2009). This inhomogeneous 
receptive field size could be either due to coarser resolution in the 
encoding of large distance, or due to less accurate update from sensory 
inputs of distal boundaries. 

The proposed theory of geometry representations could be a general 
mechanism across species. In humans, cells in the medial temporal lobe 
are found to encode egocentric bearings toward reference points posi
tioned throughout the environment. Some of these egocentric bearing 
cells also encode distance in conjunction with self-centered bearing 
(Kunz et al., 2021). By appropriate transformation, these egocentric 
bearing cells may give rise to spatial view cells, as found in the hippo
campus of primates (Rolls, 1999, 2020). The egocentric bearing cells in 
humans might provide similar functions as the bearing encoding cells 
found in the POR and LEC of rodents. The proposed theory requires the 
input from HD cells, which are supposed to be provided by separate 
circuits. The boundary features in the egocentric reference frame and 
allocentric reference frame are encoded by egocentric boundary cells 
and allocentric boundary cells respectively. Then the self-location to
ward reference points, such as centers or objects, is represented in a 
polar coordinate system by cells in POR of rodents or in para
hippocampal cortex (PHC) of primates. Combing the boundary infor
mation from the boundary-encoding cells and the self-location 
information in POR/PHC leads to a pure allocentric representation of the 
geometric layout of the local space, invariant to the positions and 
headings of the animal. This pure allocentric encoding of local space is 
embodied by the putative geometry cells. As demonstrated by the sim
ulations in this study, the activities of geometry cells provide allocentric 
geometry encoding of local space, and could be further binded in place 
cells, with other inputs from grid cells, boundary vector cells and cells 
encoding semantic or reward information, through Hebbian-like 
competitive learning mechanisms resulting in object-level representa
tions in the hippocampus. Grid cells integrate motion information as 
well as other afferent inputs from geometry cells, boundary vector cells 
and border cells, providing multi-resolutional allocentric representation 
of self-location in a global allocentric frame. 

3.2. Predictions of the theory 

The theory for geometry representations of space predicts that there 
exists a spectrum of boundary cells with various preferred distances. For 
example, some pure boundary cells would express circular-ring shaped 
firing fields in cylinder mazes (Fig. S4c). Circular-ring fields are inter
mediate firing patterns between those of annulus cells and bulls-eye 
cells. Experimental results have shown that some cells in MEC express 
fields along the wall but at some distance from the wall (Solstad et al., 
2008), a prediction of the boundary vector cell model. Similar to the 
pure boundary cells, the egocentric boundary cells would have a family 
of cells that respond to boundaries in all egocentric directions (Hinman 
et al., 2019). 

The geometry cells express uniform firing activity in convex envi
ronments. The firing rate of a geometry cell is dependent on the size and 
layout of the environment, and would show variations across different 
environments. In concave environments, e.g. mazes with the shape of a 
concave polygon or mazes with internal walls or objects, the firing map 
of a geometry cell would show some spatial tuning in the maze. The 
firing map of a geometry cell would not depend on the visual features of 
the environment, such as colors, textures, and objects, but is tuned to the 

structure of the environment. The firing map of a geometry cell may not 
be controlled by visual landmarks on the walls, but is tied to the overall 
layout of the maze. Different from place cells, which show probabilistic 
recruitment across environments, geometry cells would be active in all 
environments. 

3.3. Formation of geometry representations 

The distance of boundaries could be perceived by the binocular 
vision in the dorsal visual pathway (Harris et al., 2008). The environ
mental boundaries are initially represented egocentrically. The trans
formation from an egocentric boundary representation into an 
allocentric representation is required (O’Keefe, 1991; Byrne et al., 2007; 
Bicanski and Burgess, 2018; Knierim et al., 2014). The retrosplenial 
cortex could be a potential hub of coordinate transformation (Epstein, 
2008; Alexander et al., 2020). The geometry cells are very likely to 
reside in POR, or brain areas closely connected with POR (see Fig. 5b for 
prediction of brain areas where the geometry cells may exist). Related 
pieces of evidence come from functional magnetic resonance imaging 
(fMRI) experiments showing that PHC, the primate homolog of the ro
dent POR, is involved in representing spatial layout or learning spatial 
configurations of objects (Epstein and Kanwisher, 1998; Epstein et al., 
2007; Bohbot et al., 2015). Via the projection from POR to the hippo
campus, the population activity of geometry cells could be afferent to 
the hippocampus, facilitating the remapping of place cells in different 
environments. The geometry cells and boundary cells collectively 
constitute neural correlates of geometry cognition to support navigation 
and episodic memory. 

3.4. Complementary modules of navigation 

Some POR spatial cells provide an encoding of the self-location in a 
polar coordinate system. Entorhinal grid cells and hippocampal place 
cells represent self-location in cartesian coordinate systems. These 
different encoding schemes suggest that mammalian brains have par
allel streams of spatial information processing. The polar representation 
is useful for computing vectors, while the cartesian representations are 
suitable for encoding large-scale space by multi-resolutional codes. Be
tween the polar representations and the cartesian representations of 
space, there may exist a transformation network, which could possibly 
be performed by the entorhinal cortex. 

Self-location is encoded in parallel by LEC egocentrically and by MEC 
allocentrically. MEC is considered to be the hub for allocentric encoding 
of self-location in spatial navigation. Anatomical studies have shown 
that LEC is very similar to the MEC in terms of intrinsic connectivity 
patterns and physiological properties of the neurons (Canto et al., 2008). 
The LEC is very likely to perform path integration in the egocentric 
coordinate system. Through the connections between LEC and MEC, the 
egocentric path-integration system in LEC may improve the perfor
mance of the allocentric path-integration system in the MEC and back. 
The egocentric navigation circuits and allocentric navigation circuits 
may show asynchronous developmental phases (Bullens et al., 2010; 
Ruggiero et al., 2016). 

3.5. Quick formation of efficient cognitive map representation 

The theory supports compact and sparse cognitive map representa
tions. It successfully constructs topological cognitive maps representing 
the spatial layout of simple environments and a complex virtual office 
instead of sampling from trajectories. This allows fast construction of a 
high-level topological map of the environment without the need of 
dense coverage of the environment by trajectories (Ball et al., 2013; 
Zeng et al., 2020), or offline extraction from existing maps (Blochliger 
et al., 2018; Oleynikova et al., 2018). The topological map contains only 
the centers of local spaces and their connections, and is computationally 
efficient for navigation. The activity pattern of geometry cells is 
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associated with each vertex to characterize the geometry of local space. 
Such geometry representations allow accurate detection of the revisit of 
explored places during loop closures. 

To conclude, the proposed theory validated the functions of various 
boundary-related cell types in the formation of compact and sparse 
cognitive map representations through simulations. The theory provides 
not only a unifying framework to organize boundary-related regions in 
the brain, but also insights into the mental representations of the spatial 
layout of the world. It sheds new light on developing better intelligent 
brain-like autonomous systems capable of understanding the topology of 
the external world and achieving long-term navigation. 

4. Methods 

4.1. Boundary vector relative to the environment center 

The environment center is of behavioral importance for the explo
ration of the environment (Benjamini et al., 2011). The boundary vector 
could be represented with respect to the environment center. 

The environment center is estimated as the centroid of the region 
circumvented by the boundaries. The boundary vector EP̅→ is repre
sented relative to the environment center as OP̅→ in the reference frame at 
the center of the environment O (Fig. 2a) 

OP̅→ = EP̅→ − EO̅→. (8)  

To get OP̅→, the translation vector EO̅→ has to be estimated. Indexing the 
boundary vector OP̅→ by its orientation ω, the translation vector EO̅→ is 
estimated by minimizing the discrepancy of the central symmetry be
tween boundary vectors 

EO̅→
∗

= argmin
EO̅→

∫ π

0
‖OP̅→(ω) + OP̅→(ω∗)‖dω, (9)  

where ||⋅|| computes the length of a vector. OP̅→(ω∗) is the boundary 
vector whose direction is the most consistent with the opposite direction 
of OP̅→(ω)

ω∗ = argmin
ω′

|ω + π − ω′

|. (10)  

Here |⋅ | computes the distance on a cirle. ω′ denotes the direction of an 
arbitrary boundary vector. 

By putting the solution of Eq. (9) into Eq. (8), the boundary vectors 
are transformed to be relative to the environment center. 

4.2. Network simulation in virtual environments 

A virtual animal is simulated to explore an environment. The animal 
is able to sense the distance to boundaries in all directions. The distance 
label r of the neuronal sheet is discretized into 36 bins and the direction 
label θ is discretized into 18 bins. This results in 648 units in the 
egocentric boundary cell network, the allocentric boundary cell 
network, the geometry cell network and 1296 units for each of the 
conjunctive center bearing cell networks with positive/negative dis
tance tuning. After dimension reduction, there are 18 units in the pure 
boundary cell network. Table 1 summarizes the parameters used in the 
simulations. The diameter of the walled cylinder environment is 4 m, 
and the side of the walled square environment is also 4 m. 

To validate the biological plausibility of the proposed theory, sim
ulations of realistic environments were performed in Gazebo (http: 
//www.gazebosim.org). A rodent-like mobile robot, turtlebot3 burger 
(size 138 mm × 178 mm × 192 mm, http://www.robotis.us/turtlebo 
t-3-burger-us/) equipped with a distance sensor 2D LiDAR (360 Laser 
Distance Sensor LDS-01) and an inertial measurement unit (IMU), is 
simulated to explore randomly in virtual environments. The virtual 

environments are customized using world modeling software Blender 
(https://www.blender.org), typically including cylinder and square 
environments with walls of 0.5 m in height. 

More specifically, while the robot traverses the environment, it de
tects boundaries and forms the egocentric boundary representations 
using the egocentric boundary cell model. The robot senses its move
ments through the IMU sensor, which functions as the vestibular system 
of an animal. The angular velocity information from the IMU sensor is 
integrated using the extended Kalman filter (EKF) to get a head- 
direction estimation. This head-direction estimation is used as an 
initial value for the Iterative Closest Point algorithm (Besl and McKay, 
1992), which further improves the head-direction estimation by 
matching two sets of points observed by the LiDAR at consecutive time 
steps. Allocentric boundary representations are formed by combining 
the egocentric boundary representations and head-direction represen
tations through the allocentric boundary cell model. Based on the allo
centric boundary representation, the center of the local space is 
estimated, and is used as a reference point to encode the pose of the 
robot by the conjunctive center-bearing cell model. From the perspec
tive of the center, the layout of the local space is represented in the 
activities of geometry cells by the transformation from allocentric 
boundary representations and conjunctive center-bearing representa
tions. For each local space, the center and the corresponding geometry 
representation are attached, as the characterizing features of the local 
space, to a vertex in the cognitive map. The recruitment of a new vertex 
to the cognitive map is determined by a simple pattern separation 
mechanism. The pattern separation process computes the distance be
tween the features of local spaces. If the distance from the features of the 
current local space to the features of the previous local space is larger 
than a certain dynamic threshold, a new vertex is linked to the cognitive 
map. The dynamic threshold is decided by the size of the current local 
space. Following the method in (Zeng et al., 2020), the cognitive map is 
maintained as a topological map with vertices and edges. Connecting the 
centers associated with the geometry representations naturally results in 
a graph of the environment (Fig. 4). 

The models are implemented using C++ language, running on the 
Robot Operating System (ROS, https://www.ros.org) melodic on 
Ubuntu 18.04 LTS (Bionic Beaver). Python scripts are used to visualize 
the live state of our simulation of the robot system (Fig. S5). 
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Table 1 
Parameters used in the theory.  

Variable α σdist κang k b Cinh 

Value 0.6 0.36 45.0 15.0 6.0 0.5  
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